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I. INTRODUCTION 

Over several years, we have developed diverse body-

sensing systems to address challenges in enhancing physical, 

agricultural (agri-) technical advancement, knowledge 

sharing and teaching, and security. 

In this study, we first obtain basic data about farmers and 

data on body acceleration. Then, we conduct a broad 

explanation of multiple explainable artificial intelligence 

(XAI) libraries. XAI is a particular approach within data 

science to articulate how an AI reaches its conclusions. The 

user may adopt this explanation in some cases. In doing so, it 

is essential that we grasp how to use it. 

Thus, in this study, we use sample data with key techniques 

in the XAI library to understand the behavior of complex AI 

models. Specifically, we explore Explain Like I’m 5 (ELI5), 

Partial Dependency Plot box (PDPbox), and Skater. 

We use ELI5 to quantitatively indicate feature quantities 

and to what extent a feature is emphasized by 

PermutationImportance and discuss the results. 

We apply PDPboxes to execute a partial dependence plot 

(individual condition expectation). We present and discuss 

changes in the predicted output for feature quantities and 

various feature combinations. 

We base our Skater-based computations on using 

TreeSurrogate. We process and indicate the internal 

judgment of the AI model via conditional branching of the 

decision tree and discuss the results. 

 

II. METHOD 

A. Method 

In this study, we combine our past achievements with 

recent XAI-based analysis methodologies. We shaped our 

study’s approach in light of our results [1]–[16]. We designed 

system constructs to measure and analyze acceleration and 
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angular velocity data using general human dynamics and 

statistical approaches [17]–[27].  

To test and obtain outdoor data, subjects wore specially 

designed integrated structures with original wearable systems 

(WWSs) (Fig. 1) [19]. Each trial had 30 swings (digging up) 

with a traditional Japanese hoe, and each subject performed 

three trials successively on the same day to create sampled 

datasets per subject (Fig. 2).  

For each subject, we captured diverse information as 

presented in Table Ⅰ. This included two specific scales, the 

Visual Analogue Scale (VAS) and the Borg Rating of 

Perceived Exertion (RPE) scale, to measure worker fatigue 

and feelings against the strength of a task. The RPE measures 

perceived exertion in sports and particularly in exercise 

testing.  

We selected fifteen subjects, whose characteristics are 

summarized in Table Ⅱ. 

After basic trials in outdoor fields, we defined indicators 

concerning vertical acceleration and direction: 1) maximum 

value, 2) minimum value, 3) standard deviation (SD), and 4) 

direct current (DC) component concerning subjects’ hoe 

(hand) and waist [20].  

In particular, we note that the SD and DC component are 

meaningful values for discriminating subjects’ physical and 

motion characteristics. 

 

 
Fig. 1. A subject equipped with measuring modules and knapsack with 

laptop PC connecting to various modules. 
 

 
Fig. 2. Timeline of the outdoor trials. 

B. Theory 

A In this study, we utilize XAI-based methodologies and 

explore what is happening behind the algorithms. While other 

studies have applied this approach to training methodologies, 

ours is the first to use it in agri-research, although there have 

been other agri-research studies undertaken into training 

methodologies.  
 

TABLE I: ITEMS IN SURVEY SHEET  

Category Index Range of score (point) 

Basic information 
Name, affiliation, occupation, stature, weight, 

pre-existing disease 
These depend on content 

Low back pain (LBP) 

Experience of LBP 
No experience of LBP (0), Experience LBP in the past 

(1), Currently experiencing LBP (2) 

Frequency in the present workplace No (0), Sometimes (1), Frequently (2) 

Frequency in past workplace(s) No (0), Yes (1) 

Daily successive fatigue 
Frequency of continuing fatigue from the 

previous day 
No (0), Rarely (1), Sometimes (2), Always (3) 

Drinking and smoking habits 
Alcohol consumption 

No (0), A few times a month or a year (1),  

Every day or a few times a week (2) 
Tobacco consumption Non-smoker (0), Past smoker (1), Smoker (2) 

Sport habits 
During spare time No (0) Yes (1) 

In the past No (0), A little in the past (1), Regularly in the past (2) 

Feeling of fatigue in this trial 
Indicators in VAS and Borg RPE scale tests, 

and oral, general questions 
VAS (0 to 100), RPE (6 to 20), and open-ended question 

Usability of the systems 
Load of the systems and the tasks, load of the 

work posture fatigue of muscles 
Five-grade evaluation (0 to 5), and open-ended question 

 

TABLE Ⅱ: SUBJECTS’ DATA 

Index 

Experienced 

N=7 

Inexperienced, novice 

N=8 

Range Ave S.D. Range Ave S.D. 

Age (year) 31 to 74 62.52 14.2 23 to 34 5.6 3.58 

Experience (year) 2 to 60 34 18.1 0 0 0 

Stature (cm) 155 to 173 164 5.5 170 to 180 174 3.2 
Weight (kg) 55 to 85 70 8.9 58 to 78 67 7.5 

 
TABLE Ⅲ: BASIC DATA AFTER ONE SET OF TRIALS 

Index 
Experienced Inexperienced 

Range Average SD Range Average SD 

VAS 0 to 68.1 28.2 24.6 0 to 73.6 26.8 23.3 

RPE 9 to 12 10.1 1.17 12 to 13 12.1 0.35 
Experience of LBP 0 to 1 0.38 0.48 0 to 1 0.57 0.49 

Frequency of LBP in the present workplace 0 to 1 0.50 0.50 0 to 1 0.29 0.45 

Frequency of LBP in the past workplace 0 0 0 0 to 1 0.14 0.35 
Frequency of continuing fatigue from the 

previous day 
0 to 2 1.25 0.83 1 to 2 1.86 0.35 

Alcohol consumption 0 to 2 1 0.87 0 to 2 1 0.53 
Tobacco consumption 0 to 2 0.63 0.70 0 to 1 0.14 0.35 

Sports habit during spare time 0 to 1 0.38 0.48 0 to 1 0.86 0.35 

Sports habit in the past 0 to 1 0.38 0.48 1 to 2 1.57 0.49 
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C. Phase 1: 

1) ELI5, PermutationImportance 

We input a fitted predictive model m and a tabular dataset 

(training or validation) D. Then, we compute the reference 

score S of the model m on dataset D (for example, the 

accuracy for a classifier or the R2 for a regressor). 

Furthermore, for each feature j (column D), for each 

repetition K in 1 to K, we randomly shuffle column j of 

dataset D to generate a corrupted version of the data named 

D2k,j. Then, we compute the score Sk,j of model m on the D2k,j. 

In PermutationImportance for ELI5, importance ij for 

feature fj is calculated as: 

 

ij =S–
1

𝐾
∑ 𝑆𝐾
𝑘=1 k,j   (1) 

 

where 

ⅰ is the importance variable; 

j is the feature amount (quantity); 

S is the original predicted score value; 

K is the total number of records in the data; 

k indicates the kth data record; 

Sk,j is predicted score value of the data k after shuffling feature 

amount j. 

D. Phase 2:  

1) PDPbox 

For partial dependency plots (PDP), one or two features 

indicate the marginal effect on the prediction results of the 

machine learning model. PDPs can express whether the 

relationship between input and output is linear, monotonic, 

or more complex.  

For instance, if we apply it to a linear regression model, 

the PDP always shows a linear relationship: 

 

( ) ( ) ( ), ,
cs s x s c s cxf x E f x x f x x = =
    (2) 

 

where 

xS is a feature amount that plots the data concerning the 

partial dependence function 

xC represents the other feature amounts for the machine 

learning model f .  

Typically, a set S contains one or two feature amounts. 

The feature amount in S is the target value of the effect on 

the prediction. We construct the feature space x by 

combining the feature vectors xs and xc. Partial dependence 

works by marginalizing the output from the machine 

learning model focusing on the distribution of feature 

amounts in a set C. We can utilize the function to describe 

the relationship between the feature amounts in set S and 

the prediction result, as well as interactions between feature 

amounts. By marginalizing other features, we obtain a 

function that depends only on the feature amounts in the set 

S.  

We calculate the partial function ( )
s sxf x   as the average 

of the training data. This is sometimes referred to as the 

Monte Carlo method: 

( ) ( )( )
1

1
,

s

n
i

s s cx

i

f x f x x
n =

=     (3) 

 

The partial dependence function indicates the average 

marginal effect on the prediction for the value given to the 

feature S. 
The PDP assumption is that feature amounts in C are not 

correlated with features in S. If this assumption does not 

hold, then the average calculated for the PDP will contain 

data points that are highly unlikely, if not impossible. 

Hereinafter, we describe a classification calculation in 

which a machine learning model outputs a probability value. 

In this case, the PDP displays the probability of a particular 

class where different values are given to the feature 

amounts of S. Note that PDP is a global method here, i.e., 

this method considers all instances.  

Then, we provide a statement concerning the global 

relationship between feature amounts and prediction results. 

For categorical feature amounts, we can easily compute 

partial dependence. We force all instances of each category 

into the same category. This enables us to calculate PDPs. 

E. Phase 3:  

1) Skater, Tree Surrogate 

Here, we discuss interpretable models with Tree 

Surrogates using Skater. There are various ways to interpret 

machine learning models such as with features, dependence 

plots, and even Local Interpretable Model-agnostic 

Explanations (LIME).  

However, we cannot build an approximation or a surrogate 

model that is more interpretable from a very complex black 

box model, such as an Extreme Gradient Boost (XGBoost) 

model with hundreds of decision trees. 

Thus, we present the novel idea of using TreeSurrogate as 

a means of explaining a model's learned decision policies: 

 

( ) ( ) ( )( ) ( )
2

EPE varx f x f x x= − +    (4) 

 

where 

( )f x  is the true function; 

( )f x  is the prediction function – (a); 

var(x) is the prediction variance – (b). 

The combination of (a) and (b) is called a surrogate model. 

F. Program 

1) Phase 1: ELI5, PermutationImportance 

ELI5 is compatible with a variety of AI algorithms. 

Furthermore, it can be used even for models that do not have 

functions such as visualization of feature importance, which 

is valuable. It can also calculate PermutationImportance for 

individual prediction results. Thus, it is also a tool for making 

a choice of local explanations. 

Using ELI5, we can visualize the importance of the feature 

amount that the AI model uses to determine classifications, 

and then can output a broad explanation and a local 

explanation for the classification model and the regression 

model, respectively. 

For this phase, we scrutinize the internal parameters of the 

model for a broad description. Then, we focus on what types 
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of feature classifiers and regressors are designated as 

important from a broad perspective. Next, data is computed 

regarding what the program is processing. 

For local explanations, we provide output for individual 

programmatic predictions on the factors of the model's 

predictions. 

In some cases, it is possible to tune various elements such 

as parameters for the output result. Thus, we change the 

parameters for calculating feature importance.  

We then give an output explanation of how we value 

features inside the AI model. We execute the process using 

the parameter gain. Thus, we confirm the contribution of the 

feature amount to the aspect of discrimination accuracy. 

2) Phase 2: PDPbox 

From Phase 1, we can understand the overlapping feature 

amounts, however that is not sufficient for an adequate 

explanation. Thus, in this phase, we verify what kind of 

change occurs in the prediction result due to changes in the 

feature amount. Here, we use a PDPbox library that outputs a 

PDP. A PDPbox outputs changes in the prediction of the 

model caused by any variable, such as a PDP or Individual 

Conditional Expectation (ICE). 

We show the output data using a Python-language program 

(scikit learn), which allows us to use operators and biaxial 

graphs. We also address supervised learning algorithms that 

are compatible with them. 

The PDP and ICE outputs of the PDPbox correspond only 

to a combination of one and two variables. We provide both 

PDP and ICE outputs.  

Here, we show (a) the graph of the impact of a single 

feature, and (b) the graph of the influence of the interaction 

of two features. 

We can specify a PDP in the program and draw a two-axis 

graph within the range of standard deviation. We also specify 

ICE and draw plots of results for each individual dataset in a 

two-axis graph. 

3) Phase 3: Skater, TreeSurrogate 

We use Skater, a big-picture explanatory technique, to 

understand the prediction judgment process, and thereby 

generate a surrogate model of the decision tree.  

Here, we review the internal structure of the surrogate 

model and describe how the AI model grasps the rules of 

judgment. Fundamentally, Skater is a framework for 

interpreting various AI models. Skater’s explanatory 

functions include: 

1) Functions for providing broad pictures: 

PartialDependence, FeatureImportance; 

2) Functions for providing local pictures: 

LimeTabularExplainer, DeepInterpreter;  

3) Functions for providing both broad and local pictures: 

Bayesian Rule List Classifier (BRLC), TreeSurrogate. 

We can also use Skater to implement other algorithms, 

such as LIME, and improve the ability to interpret the model 

by various approaches. 

In the current study, we focus on applying TreeSurrogate. 

We first use decision trees that have learned the prediction 

results of the target model. We then approximate the tendency 

of judgment and explain the output by AI. The model to be 

described is one that performs learning discrimination of 

supervised AI. There is no dependency on the analysis target. 

Thus, we can apply it to various algorithms. 

For Skater, our general procedure is to generate a 

functional description base, an interpretation, and a local 

model, InMemoryModel. We combine these to explain the 

output of AI. 

We generate InMemoryModels by inputting a set of 

predictive functions and data samples for the model to be 

explained. 

We use Skater to generate decision-tree surrogate models 

for pre-trained light gradient boosting machine (LightGBM) 

models.  

 

III. RESULT 

We performed the necessary operating verifications 

concerning each function of the aforementioned system 

factors and essential experimental results concerning WSs. 

Generally, it is known that the output differs to some extent 

depending on the calculation method of 

PermutationImportance (Fig. 3–8). We found this to be the 

case in our study as well. 

For Fig. 3 and Fig. 4, we want to consider the feature 

amounts that we place importance on from the perspective of 

the accuracy of the classification of outputs. To this end, we 

used gain, which is able to emphasize desired features such 

as “Weight”, “SD of hoe (1st trial)”, etc. 

We also used splits for the same purpose, however it could 

not fairly indicate an important feature quantity in the 

judgment. However, both gain and splits can be useful for 

recognizing what decisions are being made within AI. 

Here, we output the importance of the calculated feature 

only with LightGBM and we compare this with the output of 

ELI5. In the LightGBM model, the importance of the feature 

amounts is calculated based on the sharpness and gain of the 

decomposition. We can confirm them. 

Hereafter, we describe the data shown in Fig. 6.  

This is the calculation of PermutationImportance that 

actually performs the process of sorting data. This calculation 

includes a random component. 

For ELI5, the initial setting requires executing the 

calculation five times. This data was produced accordingly. 

We present the mean value of PermutationImportance. From 

this data, we confirmed that the trend of 

PermutationImportance is similar for the training and 

validation data. In other words, it can be seen that the trend 

of the verification data is close to the trend of the training 

data. 

In this way, PermutationImportance can be used for deep 

analysis and understanding. Furthermore, future AI model 

improvements may be based on this technique. 

 

IV. DISCUSSION 

In this study, we succeeded in visualizing to some extent 

the importance of the feature amount (quantity) used for the 

analysis with ELI5. As described, ELI5 supports a variety of 

algorithms. However, the accuracy and stability of this may 

be further improved as this is a new technical field. 
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Fig. 3. Bar graph of importance values versus years of experience for the LightGBM model (gain parameter). 

 

 
Fig. 4. Bar graph of importance values versus years of experience for the LightGBM model (splits parameter). 

 

 
Fig. 5. Actual predictions for years of experience utilizing the LightGBM model. 
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Fig. 6. Actual predictions for years of experience utilizing the LightGBM model. 

 

 
Fig. 7. Line graph of output data of PDP (ICE) for years of experience. 

 

 
Fig. 8. Block chart formed by a decision-tree generated from surrogate-model-based analyses using Skater. 

(Accuracy of surrogate-model=0.85) 

 

By changing the parameters for calculating 

FeatureImportance, we were able to confirm the importance 

of the feature amount and related changes within the AI 

models. 

Additionally, we were able to visually confirm feature 

quantities and how they impact discrimination accuracy from 

the execution result for the parameter gain. We confirmed the 

technique can handle models that do not have a visualization 

function for importance. 

Using PDPbox (Fig. 7), we visually confirmed that the 

predicted probability of PDP for feature “Subjects’ years of 

experience” changes as years of experience. increases. We 

also presented ICE in plotted data under the conditions of 

individual data.  

We also showed the effect of changes of the feature amount 

on the resulting data in two types of planar graphs, 

InformationPlots and PDPs. Furthermore, we were able to 

identify changes in characteristics that occur only under 

certain conditions using only some data. Regarding the target 

data of this study, PDPbox is an effective tool for practically 

observing the relationship between the AI model and the 

feature amount in detail. 
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V. CONCLUSION AND FUTURE TASKS 

We verified the fundamental operations of explainable 

artificial intelligence (XAI) techniques (ELI5, PDPbox, and 

Skater) by utilizing our diverse, pre-obtained agricultural 

(agri-) worker data from WSs and questionnaires. 

First, we developed several basic steps of the 

aforementioned XAI-based systems and methods, especially 

with consideration for the fusion of agri-informatics, 

statistics, and human dynamics. Second, we obtained, 

checked, and discussed various promising XAI data. 

In future, other recent methodologies of human dynamics 

and data analysis (e.g., higher mathematics) should be 

incorporated. Further exploration of “skill tradition” and agri-

worker daily tasks would be very useful. 

We also believe that the overall results and outcomes 

demonstrate that the measure of precision for diagnosing 

agri-critical situations (e.g., heavy diseases, injuries) can be 

improved. From the perspective of global agricultural 

dynamics, we have some plans to launch to other countries. 

These trials have certainly been challenging so far; 

however, they will comprehensively contribute to agri-

industries and workers.  
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