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I. INTRODUCTION 

The working state of a machine has been of uttermost 

concern to man since the birth of machines. Early engineers 

rely solely on physical observation and the use of biological 

senses to determine the fault in a machine. The advent of 

measuring instruments or sensors provides more data to 

detect faults but their reliability and sometimes demand 

recalibration provide more concerns for engineers [1]. The 

need for Fault Detection and Isolation (FDI) has increased 

as the system gets more complex. The computation demands 

the Satellite Attitude Control System makes this task even 

more challenging [2]. 

Due to the high pointing accuracy (especially in 

geostationary and deep space missions) needed to ensure 

that a spacecraft points to the desired direction at all times 

during its lifespan, the need to continually monitor its 

attitude control system has become imperative [3]. To avert 

performance degradation, the attitude control system of a 

satellite needs to be continually checked for fault detection 

in order to provide quick diagnosis and subsequent solutions 

[4]. 

Non-statistical methods include fuzzy logic, neural 

networks, artificial immune systems, and deep learning. 

This last category can be especially useful for highly 

complex systems, high noise environments, and benefit from 

large data sets. Especially deep learning eliminates the need 

for feature extraction and is highly self-learning and 

adaptive. Owing to the learning abilities, robustness to 

noise, and ability to represent complex systems, artificial 

intelligence may be a good solution for fault detection and 

isolation. It is identified that k-nearest neighbors (k-NN), 

Naive Bayes classifiers, Support Vector Machines (SVM), 

and Artificial Neural Networks (ANN) have been applied 

most, with deep learning starting to be applied [5].  

One area for fault detection and isolation currently being 

explored in depth is the knowledge-based, data-driven 

methods [7]. These methods make use of the growing 

amounts of telemetry data and increasing onboard 

processing power and can generally be divided into 

statistical and non-statistical methods [8]–[9]. Statistical 

methods include principal component analysis, partial least 

squares, and support vector machines [10].  

The problem of fault detection and identification in 

Satellite Attitude and Orbit Control Systems (AOCS) has 

received a great deal of attention during the past years [11]. 

The improvements in the accuracy and reliability of AOCS 

contribute directly to the success and reliability of satellites 
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in space. Hence, an exceptional level of autonomy is 

required. Fault detection and identification is an essential 

component of an autonomous system. This led to research in 

developing new methods for supervision, fault detection, 

fault isolation, and fault recovery. The inherent nonlinearity 

of satellite dynamics however makes the accurate and 

efficient fault detection of AOCS a challenging problem 

[11]. 

The massive amounts of telemetry data transmitted by an 

in-orbit satellite are the sole observational basis of the 

satellite’s operation. Through the analysis of telemetry data, 

ground telemetry, track, and command (TT&C) stations can 

determine the satellite’s operational state and detect possible 

faults in a timely fashion, assisting the normal operation of 

the in-orbit satellite. Currently, the fixed threshold method is 

the main method for fault detection in telemetry data in 

engineering [11], [12]. With a simple mechanism and rapid 

detection speed, this method can be used to detect anomalies 

beyond the threshold in a timely manner.  

However, due to the influence of complex noise in the 

actual telemetry data, the fixed threshold method is prone to 

producing false alarms in the detection. In addition, the 

method cannot detect anomalies within the threshold. 

According to [8], the dynamic equation of a satellite is 

described by: 

 

( )  +−= HSH     (1) 

 

Where: 

τ ∈ R3 – represents the control input vector action on the 

satellite in x, y, and z axes directions respectively as shown 

in equation (2). 

ω – the angular velocity vector of the satellite, expressed in 

the satellite body frame given by equation (3),  

H – the symmetric positive definite inertia matrix of the 

satellite and  

S(ω) – the cross-product matrix given by equation (4). 

 

 Tzyx  =     (2) 

 

 T321  =     (3) 

 

















−

−

−

=

0

0

0

)(

12

13

23







S   (4) 

 

If the kinetic equation based on the choice of attitude 

representation using Euler angles is: 
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where: 

𝜓, Ɵ, 𝜙, s and c – roll, pitch, yaw, sine, and cosine 

respectively. 

An actuator fault can be considered by adding an extra 

torque component τF to the dynamic equation such that:  

 

( ) FHSH  ++−=    (7) 

 

where: 

τF – an unknown fault. If we define new variables x and u 

where: 
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then we can further deduce that: 
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x can further be rewritten in the form: 

 

( ) FTuxgAxx ++= ,    (9) 

 

where: 

g(x,u) = f(x,u) – Ax and matrix A is a Hurwitz matrix. 

Parameterizing the mapping g by feed-forward neural 

network architecture a recurrent network model based on the 

above equation is constructed. The following model is 

considered for the observer design. 

 

( ) ( )wxTuxgAxx F ,ˆ,ˆ ++=    (10) 

 

where: 
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The neural network weight is updated based on a back-

propagation (BP) scheme. Backpropagation is one of the 

gradient descent algorithms used to reduce the performance 

function by updating of the neural network weights by 

moving them along the negative of the performance function 

gradient [13]. 

 



 RESEARCH ARTICLE 

European Journal of Artificial Intelligence and Machine Learning 
www.ej-ai.org 

 

 

                                                              
DOI: http://dx.doi.org/10.24018/ejai.2023.2.2.18                                                                                                                                                      Vol 2 | Issue 2 | March 2023 3 

 

II. PROCEDURE 

A.  Data Acquisition 

For this work, two months of real satellite data were 

downloaded from the Nigcomsat-1R satellite ground control 

station in Abuja, Nigeria. The outlook of some of the 

Momentum Wheel hourly telemetry data is shown in Fig.1 

through Fig.6. 

Both MW1 and MW2 speeds show some repetitive trends 

every two weeks but their corresponding torques are more 

random with unusual spikes that may be due to surges or bit 

errors. 
 

 
Fig. 1. MW1 Spee Plot. 

 

 
Fig. 2. MW2 Speed vs. time. 

 

 
Fig. 3. MW1 Torque plot. 

 

 
Fig. 4. MW2 Torque plot. 

 

 
Fig. 5. MW1 Torque-speed distribution. 

 

 
Fig. 6. MW2 Torque-speed distribution. 

 

Similar data available for the wheel currents and voltages 

will not be shown here but the result of the telemetry data 

compared with the Neural Network results will be provided 

later. 

B. Data Mining 

The raw satellite telemetry data are non-linear with bad 

correlation. MATLAB analytical and curve fitting tools 

were used to process the data to a much more usable state 

while still retaining essentially the main properties of the 

initial data. Some unwanted data errors sometimes caused 

by bit errors in digital transmission due to noise, 

interference, distortion, or bit synchronizations must be 

removed from the raw data to get the user data. The first 

level of mined data obtained for MW1 is shown in Fig.7.  
 

 
Fig. 7. Mined MW1 Torque-speed data level 1. 

 

C. Network Modelling and Optimization 

The choice of using ANN for this research work is based 

on its efficiency in network modeling involving the handling 

of large data samples such as telemetry data as applicable 

here. Neural Network modeling involving Resilient 

Propagation (RPROP) and Levenberg-Marquardt (LM) 

algorithms were compared. Although the Levenberg-

Marquardt algorithm has been found to be faster and has 

better performance than the other algorithm in training, the 
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Resilient Backpropagation algorithm has the best accuracy 

in the testing period [14]. The relative performance of these 

algorithms depends on the given task, but RPROP produces 

better performance in terms of convergence speed, stability, 

and generalization properties [14]. The Resilient 

Propagation algorithm was adopted for this paper. It is 

worth reiterating here that the nature of the randomness of 

the telemetry data made the network design very difficult. 

To achieve any reasonable form of network modeling, some 

sets of telemetry data obtained were carefully mined before 

use. 

Matlab M-files call the text files containing the MW 

telemetry data and extract the relevant input and output data 

for subsequent Neural Network modeling. The MW speed 

and corresponding MW torques were first used to model a 

NN that checks the momentum wheel’s performance 

onboard the spacecraft. For this design, a single input, ten 

elements at the hidden layer, and one element at the output 

layer were adopted. 

After several iterations and optimization, the logsig and 

purelin transfer functions were chosen for use in the hidden 

and output layer respectively. The trainer network training 

function was used to update weight and bias values 

according to the resilient backpropagation (RPROP) 

algorithm. A training rate of 0.05, a maximum epoch of 300, 

and a goal of 1e-5 were set for the network. The Matlab 

gensim() command was used to generate a Simulink model 

of the M-file Neural Network for ease in dynamic 

simulation using Matlab Simulink. Fig. 8 shows the NN 

MLP architecture, algorithm, and simulation progress.  

 
Fig. 8. NN MLP architecture, algorithm, and simulation progress. 

 

Fig. 9 shows the Simulink model of this NN. The input 

takes in a constant (that is Telemetry data for MW speed and 

Torque at a given time) and generates the corresponding 

output (MW Torque). 

 
Fig. 9. Simulink model of the Neural Network. 

 

III. RESULTS AND DISCUSSION 

The Neural Network design model’s output and input and 

output data are saved in a text file to ease computational 

comparison and analysis. An extract from the text file for 

MW1 is shown in Fig. 10. 

 

 
Fig. 10. MW1 speed and torque data compared with NN output. 

 

The NN design ensures that the associated MW speed and 

the corresponding torque are logged in a Fault-Log file in 

the event of a fault to ease subsequent identification and 

isolation. A message box incorporated in the design pops up 

to indicate the number of faults detected as logged in the 

text file. A fault is detected if the absolute difference 

between the original output (MW1 Torque) and the NN 

Torque output is>0.012. This value was chosen after 

carefully studying the maximum difference between the 

original output data and the neural network-trained outputs 

from several results. A preview of the pop-up window and 

the Fault-Log file is shown in Fig. 11 and Table I 

respectively. 

 

 
Fig. 11. MW1 Torque Fault Alert. 

 

The best performance of the Neural Network Training, 

Validation, and Test within the set goals is shown in Fig. 12. 

The set goal, the number of epochs, and the training rate 

influence the overall training performance of the network. 

This, however, depends on the linearity of the data provided 

and the network algorithm is chosen. 
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TABLE I: MW1 SPEED, TORQUE, AND TIME DATA FAULT-LOG 

Date and Time Speed (rpm) Torque (Nm) 

2012-01-22 20:59:59.820 4234.38 -0.0304 

2012-01-25 15:59:56.154 4333.01 -0.028 

2012-01-27 00:59:56.172 4236.33 -0.0016 

2012-01-30 02:59:59.206 4145.51 -0.02 

2012-01-30 14:59:55.503 4183.59 -0.0144 

2012-01-31 23:59:55.523 4298.83 0.0336 

2012-02-04 23:59:58.574 4277.34 0.0672 

2012-02-14 02:59:54.253 4143.55 0.0072 

2012-02-14 03:59:58.720 4169.92 0.0528 

2012-02-14 21:00:00.977 4242.19 0.0072 

2012-02-15 23:59:58.757 4302.73 -0.0352 

 

 
Fig. 12. MW1 Speed-Torque Neural Network Training Performance. 

 

From the Neural Network result log file, we can make a 

comparison of the given output data and the corresponding 

output data from the trained network given the same set of 

initial inputs. The result obtained for mined data (levels 1 

and 2) for MW1 Torque given its speed as input is shown in 

Fig. 13 and 14 respectively. In each of the two figures, a 

comparison is made between the given output and the NN 

output over time with respect to the available hourly 

telemetry data.  
 

 
Fig. 13. MW1 Torque Telemetry Level 1 vs. Neural Network Training 

Result. 
 

 
Fig. 14. MW1 Torque Telemetry Level 2 vs. Neural Network Training 

Result. 

As shown in Fig. 15, there is a large disparity (error) 

between the NN output, and the given output (MW1 torque). 

We can therefore deduce that there is more correlation 

between the Neural Network output and the initial output for 

the level 2 data set. Although the number of useful sample 

data has been significantly reduced. With further data 

mining and modification of the training algorithm, we can 

almost replicate the initial output data sets with minimal 

error.  

 

 
Fig. 15. MW1 Torque Error Histogram Level 2 

 

The Neural Network Regression plot is shown in Fig. 16. 

 

 
Fig. 16. MW1 Torque NN Training Regression Level 2. 

 

 
Fig. 17. MW1 Torque NN Training Fit Level 2. 
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From the Error Histogram, NN Training Regression, and 

the Output Element Function Fit (all are mined level 2 data 

results), we can easily see that the output error is 

occasionally high. This is not a result of the bad Neural 

Network design but rather the non-linearity of the Training 

Output (MW1 Torque) which has a large disparity as shown 

earlier in Fig. 3 making it extremely difficult for the training 

network to minimize errors. 

All the results for other MW telemetry data will not be 

repeated here independently because their Neural Network 

designs are similar. However, some error histograms, Neural 

Network Training Performance, and Function Fit for Output 

Elements of the Neural Network model for MW1 and MW2 

Speed-Torque, as shown in Fig. 17, Fig. 18, Fig. 19, Fig. 20, 

Fig. 21, and Fig. 22. The Voltage-Current Telemetry data 

(not mined) and error histograms for MW1 and MW2 are 

presented in Fig. 23, Fig. 24, Fig. 25, Fig. 26, and Fig. 27 

accordingly. 
 

 
Fig. 18. MW1 Torque Neural Network Training Regression. 

 

 
Fig. 19. MW1 Torque Error Histogram. 

 
Fig. 20. MW1 Torque NN Training Performance. 

 

 
Fig. 21. MW2 Torque NN Training Performance. 

 

 
Fig. 22. MW2 Torque NN Training Fit. 
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Fig. 23. MW1 Current NN Training Fit. 

 

 
Fig. 24. MW1 Current NN Training Performance. 

 

 
Fig. 25. MW1 Current Error Histogram. 

 

 
Fig. 26. MW2 Current NN Training Performance. 

 

 
Fig. 27. MW2 Current NN Training Fit. 

 

The results obtained above showed that considering the 

error margin, the mined data (as shown from the MW1 data) 

produced a better network design than the raw data. 

 

IV. CONCLUSION 

In this paper, detailed analysis and satisfactory results 

were obtained using Matlab/Simulink. The Mean Squared 

Error (MSE) for MW1 Speed-Torque Neural Network 

Training is 1.2217e-5 at epoch 50, 9.8489e-6 at epoch 10 for 

MW1 Torque NN Training and 1.9069e-5 at epoch for 

MW2 Torque NN Training. A fault is detected if the 

absolute difference between the original output (MW 

Torque) and the NN Torque output is greater than 0.012. 

This value was chosen after carefully studying the 

maximum difference between the original output data and 

the neural network-trained outputs from several results. The 

results obtained also showed that considering the error 

margin, the mined data produced a better network design 

than the raw data. 
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