##plugins.themes.bootstrap3.article.main##

Artificial intelligence (AI) is a field that has undergone significant changes and challenges over time. This paper reviews the historical development of AI and representative philosophical thinking, and also considers the methodology and applications of AI, and anticipates its continued advancement. It discusses two main paradigms: symbolism and connectionism, which differ in how they explain and implement intelligence through symbols or artificial neural networks. However, neither paradigm is the final answer to AI research but rather reflects the best answer at a given time. The paper also analyzes the shortcomings of both paradigms from a philosophical perspective and argues that the most fundamental philosophical issue therein is understanding the difference between biological and artificial intelligence.

References

  1. Boole, G. An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities (pp. 1–446). Walton and Maberly. 1854. https://doi.org/10.5962/bhl.title.29413.
     Google Scholar
  2. Turing, A. M. Computing machinery and intelligence. Mind. 1950; 59(October): 433–460. https://doi.org/10.1093/mind/LIX.236.433.
     Google Scholar
  3. Buchanan, B. G. A (Very) brief history of artificial intelligence. AI Magazine. 2005; 26(4): 53–53. https://doi.org/10.1609/aimag.v26i4.1848.
     Google Scholar
  4. Pastre, D. Automated theorem proving in mathematics. Annals of Mathematics and Artificial Intelligence. 1993; 8(3–4): 425–447. https://doi.org/10.1007/BF01530801.
     Google Scholar
  5. Davis, M., & Putnam, H. A. Computing procedure for quantification theory. Journal of the ACM. 1960; 7(3), 201–215. https://doi.org/10.1145/321033.321034.
     Google Scholar
  6. Davis, M., Logemann, G., & Loveland, D. A machine program for theorem-proving. Commun. ACM. 1962; 5(7): 394–397. https://doi.org/10.1145/368273.368557.
     Google Scholar
  7. Gilmore, P. C. A proof method for quantification theory: its justification and realization. IBM Journal of Research and Development. 1960; 4(1): 28–35. https://doi.org/10.1147/rd.41.0028.
     Google Scholar
  8. Lederberg, J. How DENDRAL was conceived and born. In A history of medical informatics (pp. 14–44). Association for Computing Machinery. 1990. https://doi.org/10.1145/89482.89484.
     Google Scholar
  9. Lederberg, J., Sutherland, G. L., Buchanan, B. G., Feigenbaum, E. A., Robertson, A. V., Duffield, A. M., & Djerassi, C. Applications of artificial intelligence for chemical inference. I. Number of possible organic compounds. Acyclic structures containing carbon, hydrogen, oxygen, and nitrogen. Journal of the American Chemical Society. 1969; 91(11): 2973–2976. https://doi.org/10.1021/ja01039a025.
     Google Scholar
  10. Buchanan, B. G., & Feigenbaum, E. A. Dendral and meta-dendral: Their applications dimension. Artificial Intelligence. 1978; 11(1–2), 5–24. https://doi.org/10.1016/0004-3702(78)90010-3.
     Google Scholar
  11. Weischedel, R. M. Knowledge representation and natural language processing. Proceedings of the IEEE. 1986; 74(7), 905–920. https://doi.org/10.1109/PROC.1986.13571.
     Google Scholar
  12. Bayle, A. J. Frames: A heuristic critical review. Eighth Annual International Phoenix Conference on Computers and Communications. 1989 Conference Proceedings, 624–628. 1989;https://doi.org/10.1109/PCCC.1989.3745.
     Google Scholar
  13. Schank, R. C., & Abelson, R. P. Scripts, plans, and knowledge. Proceedings of the 4th International Joint Conference on Artificial Intelligence-Volume 1, 151–157. 1971. https://doi.org/DOI: 10.5555/1624626.1624649.
     Google Scholar
  14. Sowa, J. F. Conceptual graphs for a data base interface. IBM Journal of Research and Development. 1976; 20(4): 336–357. https://doi.org/10.1147/rd.204.0336.
     Google Scholar
  15. Wille, R. Restructuring lattice theory: an approach based on hierarchies of concepts. In I. Rival (Ed.), Ordered Sets (pp. 445–470). Springer Netherlands. 1982. https://doi.org/10.1007/978-94-009-7798-3_15.
     Google Scholar
  16. Elkan, C., & Greiner, R. Building large knowledge-based systems: Representation and inference in the cyc project: D.B. Lenat and R.V. Guha. Artificial Intelligence. 1993; 61(1): 41–52. https://doi.org/10.1016/0004-3702(93)90092-P.
     Google Scholar
  17. iller, G. A. WordNet: A lexical database for English. Communications of the ACM. 1995; 38(11): 39–41. https://doi.org/10.1145/219717.219748.
     Google Scholar
  18. Berners-Lee, T., Hendler, J., & Lassila, O. The Semantic Web. Scientific American. 2001; 284(5): 34–43. https://doi.org/10.1038/scientificamerican0501-34.
     Google Scholar
  19. McCulloch, W. S., & Pitts, W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics. 1943; 5(4): 115–133. https://doi.org/10.1007/BF02478259.
     Google Scholar
  20. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review. 1958; 65(6): 386–408. https://doi.org/10.1037/h0042519.
     Google Scholar
  21. Van Der Malsburg, C. Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. In G. Palm & A. Aertsen (Eds.), Brain Theory (pp. 245–248). Springer. 1986. https://doi.org/10.1007/978-3-642-70911-1_20.
     Google Scholar
  22. Huang, G.-B. What are extreme learning machines? Filling the gap between frank rosenblatt's dream and john von neumann's puzzle. Cognitive Computation. 2015; 7(3): 263–278. https://doi.org/10.1007/s12559-015-9333-0.
     Google Scholar
  23. Werbos, P. Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph. D. Dissertation, Harvard University. 1974. https://cir.nii.ac.jp/crid/1572824499094264320.
     Google Scholar
  24. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences. 1972; 79(8): 2554–2558. https://doi.org/10.1073/pnas.79.8.2554.
     Google Scholar
  25. Hopfield, J. J., & Tank, D. W. “Neural” computation of decisions in optimization problems. Biological Cybernetics. 1985; 52(3): 141–152. https://doi.org/10.1007/BF00339943.
     Google Scholar
  26. Todd, P. M. A connectionist approach to algorithmic composition. Computer Music Journal. 1989; 13(4): 27–43. JSTOR. https://doi.org/10.2307/3679551.
     Google Scholar
  27. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. Learning representations by back-propagating errors. Nature. 1986; 323(6088): 533–536. https://doi.org/10.1038/323533a0.
     Google Scholar
  28. Hinton, G. E., & Salakhutdinov, R. R. Reducing the Dimensionality of Data with Neural Networks. Science. 2006; 313(5786), 504–507. https://doi.org/10.1126/science.1127647.
     Google Scholar
  29. Newell, A., & Simon, H. A. Computer science as empirical inquiry: symbols and search. Commun. ACM. 1976; 19(3): 113–126. https://doi.org/10.1145/360018.360022.
     Google Scholar
  30. Newell, A., & Simon, H. A. The Logic Theory Machine. A Complex Information Processing System. Journal of Symbolic Logic. 1957; 22(3): 331–332. https://doi.org/10.2307/2963663.
     Google Scholar
  31. Kleene, S. C. Representation of events in nerve nets and finite automata. In C. E. Shannon & J. McCarthy (Eds.), Automata Studies. (AM-34) (pp. 3–42). Princeton University Press. 1956. https://doi.org/10.1515/9781400882618-002.
     Google Scholar
  32. Dreyfus, H. L. What computers can't do: The limits of artificial intelligence. New York [etc.] : Harper & Row. 1979. http://archive.org/details/whatcomputerscan00hube.
     Google Scholar
  33. Dreyfus, H. L., & Dreyfus, S. E. Making a mind versus modelling the brain: artificial intelligence back at the branchpoint. In M. Negrotti (Ed.), Understanding the Artificial: On the Future Shape of Artificial Intelligence (pp. 33–54). Springer London. 1991. https://doi.org/10.1007/978-1-4471-1776-6_3.
     Google Scholar
  34. Putnam, H. Reason, truth and history. Cambridge University Press. 1981. https://doi.org/10.1017/CBO9780511625398.
     Google Scholar
  35. Glymour, C. Artificial intelligence is philosophy. In J. H. Fetzer (Ed.), Aspects of Artificial Intelligence (pp. 195–207). Springer Netherlands. 1981. https://doi.org/10.1007/978-94-009-2699-8_7.
     Google Scholar
  36. McCarthy, J. Artificial intelligence, logic and formalizing common sense. In R. H. Thomason (Ed.), Philosophical Logic and Artificial Intelligence (pp. 161–190). Springer Netherlands. 1989. https://doi.org/10.1007/978-94-009-2448-2_6.
     Google Scholar
  37. Dreyfus, H. L., & Dreyfus, S. E. From Socrates to expert systems: The limits of calculative rationality. Technology in Society. 1984; 6(3): 217–233. https://doi.org/10.1016/0160-791X(84)90034-4.
     Google Scholar
  38. Feigenbaum, E., & McCorduck, P. The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World. Addison-Wesley Longman Publishing Co., Inc.1983.
     Google Scholar
  39. Minsky, M. L. logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Magazine. 1991; 12(2): 34. https://doi.org/10.1609/aimag.v12i2.894.
     Google Scholar
  40. Jaeger, H. Deep neural reasoning. Nature. 2016; 538(7626): 467–468. https://doi.org/10.1038/nature19477.
     Google Scholar
  41. Blazek, P. J., & Lin, M. M. Explainable neural networks that simulate reasoning. Nature Computational Science. 2021; 1(9): 607–618. https://doi.org/10.1038/s43588-021-00132-w.
     Google Scholar
  42. Pagels, H. R., Dreyfus, H. L., Mccarthy, J., Minsky, M. L., Papert, S., & Searle, J. Panel discussion.: has artificial intelligence research illuminated human thinking? Annals of the New York Academy of Sciences. 1984; 426(1 Computer Cult), 138–160. https://doi.org/10.1111/j.1749-6632.1984.tb16517.x.
     Google Scholar
  43. Bell, A. J. Levels and loops: The future of artificial intelligence and neuroscience. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 1999; 354(1392): 2013–2020. https://doi.org/10.1098/rstb.1999.0540.
     Google Scholar
  44. Kleene, S. C. Representation of Events in Nerve Nets and Finite Automata. In C. E. Shannon & J. McCarthy (Eds.), Automata Studies. (AM-34) (pp. 3–42). Princeton University Press. 1956. https://doi.org/10.1515/9781400882618-002.
     Google Scholar
  45. Macpherson, T., Churchland, A., Sejnowski, T., DiCarlo, J., Kamitani, Y., Takahashi, H., & Hikida, T. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Networks. 2021; 144: 603–613. https://doi.org/10.1016/j.neunet.2021.09.018.
     Google Scholar
  46. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review. 1958; 65(6): 386–408. https://doi.org/10.1037/h0042519.
     Google Scholar
  47. Schiaffonati, V. A Framework for the foundation of the philosophy of artificial intelligence. Minds and Machines. 2003; 13(4): 537–552. https://doi.org/10.1023/A:1026252817929.
     Google Scholar
  48. Shortlife, E. H. The computer as clinical consultant. Archives of Internal Medicine. 1980. 140(3): 313–314. https://doi.org/10.1001/archinte.1980.00330150027008.
     Google Scholar
  49. Wang, H. Toward Mechanical Mathematics. IBM Journal of Research and Development. 1960; 4(1): 2–22. https://doi.org/10.1147/rd.41.0002.
     Google Scholar